

Johann Summhammer and Zahra Halavani Solar Cells Group, TU-Vienna, Vienna, Austria. http://www.ati.ac.at/~summweb

Motivation:

Standard 156 x 156 mm² silicon solar cells are HIGH CURRENT devices (9 A)

- → Thick wiring needed for small ohmic loss (I²)
- → Problem:
- High shading
- Soldering difficult with thickness below 150 μm (cracks)
- Glueing possible but expensive

Consequence:

Rectangular cells, e.g. **39 x 156 mm²**, connected at long side

- → Ohmic loss per cell reduced by factor 16
- → LESS STRINGENT REQUIREMENT ON CELL INTERCONNECTION

The ideal concept of QuarterCells

(introduced by J. Summhammer and H. Rothen, 24th EUPVSEC, Hamburg, 2009, p.2221)

Mono- or poly-crystalline silicon solar cells of 156 x 156 mm² with special layout of metallization

Cut by laser → 4 QuarterCells of 156 x 39 mm²

Interconnection by overlap: front bus bar is covered back bus bar of next cell on top of front bus bar

→ very short electrical paths

Comparison of strings

Quadratic cells 156 x 156: Area loss by bus bars: 2.9 %

Area loss by cell spacing: 1.3 %

Ohmic loss in bus ribbons at peak power: 2.3 %

TOTAL: 6.5 %

QuarterCells 156 x 39: Area loss by bus bars: 0.0 %

Area loss by cell spacing: 0.0 %

Ohmic and area loss because of more fingers: ~ 0.2 %

TOTAL: 0.2 %

[→] For same module area: QuarterCells give about 6% more peak power

Here we test: Interconnection by pressure,

NO soldering, NO glueing

Concept: Cells become bent around contact strips in laminated glass – backsheet module.

- permanent bend creates force between cell bus bars and contact strips
- → good electrical contact
- → cells can slide against each other

Tests with

Cut from standard cells

QuarterCells of type P

QuarterCells of type K

Standard cells scheme (standard 156 x 156 quadratic cells cut in 4 pieces):

J.J. Lang, M.Sc.-Thesis, 2014

Front and back side of small module with 5 standard cells

Contact strips: Cu

Connection to outside: soldering

Cells are held together by high temperature adhesive tape

QuarterCells "P"

Special connection with two adhesive tapes and coated Cu-tape wrapped around

Another method of intereconnecting QuarterCells "P"

Straight contact strips placed between cells, analogous to method for standard cells

This study:

Rapid ageing of small modules each with 5 cells

Temperature cycling: -24°C to +87°C 3 cycles per day.

Outdoor tests of large modules (240 W class)

Tested: different cells different types and thicknesses of contact strips ($50 - 300 \mu m$)

Types of contact strips:

- SnPbAg-coated (solar ribbon, but not soldered)
- Ag-coated
- Pure Cu
- Sn-covered Fe

Cell type	Module name	Contact strips		
		Coating, µm	TxW[mm] #	
Standard	HA1	SnPbAg, 15	0.15 x 2.5 2	
	HA2	SnPbAg, 15	0.20 x 2.0 2	
	HA5	Cu	0.20 x 2.5 2	
	HA8	Ag, ~1	0.30 x 2.2 2	
QuarterCell	HA3	Ag, 6.5	0.19 x 5.0 4	
"K"	HA4	Ag, 6.5	0.19 x 5.0 4	
	HA9	Ag, ~1	0.30 x 2.2 3	
	HA11	Ag, 6.5	0.25 x 5.0 3	
	SU2	Cu	0.20×5.0 3	
QuarterCell	MeSn1	SnPb, 6.5	0.05 x 3.5 7	
"P"	MeSn2	SnPb, 6.5	0.05 x 3.5 7	
	MeAg1	Ag, 6.5	0.05 x 5.0 7	
	MeAg2	Ag, 6.5	0.05 x 5.0 7	
	HA6	Ag, 6.5	0.19 x 2.5 3	
	Fe2	Sn on Fe*	0.20 x 2.0 3	

^{* &}quot;tinned iron"

IV-curve measurements under 1000 W/m², typically after every 50 temperature cycles

Power loss of small modules with Standard Cells

SnPbAg-coating (normal solar ribbon but NOT soldered): abrasions →
strong fluctuations of series resistance, fast decline of Pmax
with occasional recovery

Pure Cu: initial fast increase of series resistance and then slow decrease; oxidations?

Ag-coating: only very slow decrease in Pmax

Power loss with QuarterCells "K"

Pure Cu: again fast decrease in power and then recovery

Ag-coating: often an initial increase in power, probably due to formation of larger contact area by rubbing during temperature cycles, then only slow decrease in Pmax

13

Power loss with QuarterCells "P"

Ag-coating: again initial increase of Pmax of all three modules, then only slow decrease **High lamination pressure is better!** (MeAg1: 600 mbar, MeAg2: 800 mbar)

SnPbAg-coating: contact strips were of wrap-type. Good performance for 120 cycles, then abrasions, fluctuations of series resistance, fast decline of Pmax

Sn on Fe ("tinned Fe"): better than SnPbAg, but much worse than Ag

~ 163 x 98 cm

Each module: 6 strings in series, 42 cells per string (except 5 and 8) cell overlap 2 mm (except 5)

4: Standard cells SOLDERED (reference)

3: Standard cells

Ag 2x

T = 0.24 mm

2: Standard cells

Ag 2x

T = 0.19 mm

1: Standard cells SnPbAg 2x T = 0.22 mm

8: QuarterCells "K"

Ag 3x

T = 0.25 mm

(41 cells / string)

7: Standard cells

Cu

T = 0.20 mm

6: Standard cells, 3BB

Ag 3x

T = 0.24 mm

5: QuarterCells "K"

Ag 4x

T = 0.19 mm

Overlap 5mm

(46 cells / string)

- measure IV-curves every 2 minutes for several days
- short circuit modules for several days to weeks

Ageing: Increase of Rser → decrease of fill factor

Selected IV-curves: Isc = 1.2 A

SnPbAg: strong deterioration

Ag: little deterioration Cu: initial low FF deteriorates further

Agrees with rapid aging tests of small modules

Expected Power Loss per Year

Method: An IV-curve with Isc around 1.2 A from the first few days is extrapolated to an IV-curve of same Isc, but with observed FF-decline of one year. Then both curves are extrapolated to illumination of 1000 W/m², and Pmax of these curves are compared. Data included until Apr. 29, 2015.

Module	First day	Contact strip coating	Max. Power measured outdoor [W]	ΔP / year [%]
1	Aug.23, 2013	SnPbAg	183.7	-29.6
2	Aug.29, 2013	Ag	226.5	-2.4
3	Feb.13, 2014	Ag	217.4	-2.4
4	Feb.13, 2014	SOLDERED, ref.	215.7	-2.5
5	Feb.13, 2014	Ag	209,4	-2.5
6	May 2, 2014	Ag	222.4	+0.2*
7	May 2, 2014	Cu	168.0	-4.5
8	Sep. 4, 2014	Ag	204.4	Not enough data

SnPbAg is very bad, Cu is bad, Ag is as good as soldered interconnections

Inverse slope of IV-curve near Uoc is very sensitive to change of series resistance

Averaged for IV-curves with Pmax between 80 W and 160 W. Slope taken from Uoc to 40% of Ipmax.

M1: SnPbAg:

strong increase of series resistance

M2: soldered reference:

slow increase of series resistance

M6: Ag:

apparent slow decrease of series resistance

Conclusions

- "Pressure-Only" cell interconnections, produced by a slight bending of overlapped cells with contact strips in between are a possible method of stringing of glass – back sheet type crystalline Si modules
- Ag proved to be the best contact material to screen printed bus bars.
 It performed as good as soldered interconnections
- Low current is preferable
 - → Change of cell format is necessary
 - → Short rectangular cells, which should be overlapped at the long edges
 - → High voltage modules are possible
- "Pressure-Only" interconnections save 70 90% of copper in a typical 240 W module
- "Pressure-Only" interconnections could be optimal for stringing of very thin Si solar cells.
 They avoid the mechanical and thermal stress of soldering bulky metal onto the cells.